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Abstract

1 Introduction

We need to be able to state rules in terms of generic forms or patterns over
SCL [] (or KIF [1]) rather than SCL itself.

We need to describe why we are using SCL and what is the rela-
tionship between SCL and the Semantic Web

The work described this paper is developed in the context of the Proof
Markup Language (PML) [3], which is an interlingua for capturing the informa-
tion agents need to understand results and to justify why they should believe
the results. NodeSet and InferenceStep are the main PML constructs for proofs
and explanations. A NodeSet represents a step in a proof whose conclusion is
justified by any of a set of inference steps associated with the NodeSet. An
InferenceStep represents a justification for the conclusion of a node set. Many
are the syntactic conditions for a set of PML document representing proofs to
be well-formed. An important syntactic conditions for having a well-formed set
of PML documents, however, is not in PML itself: inference steps are correct
application of rules on inference step premises.

This paper introduces PPDR – A Proof Protocol for Deductive Reasoning,
which is a language for stating rules in terms of SCL patterns. Thus, a PML
proof is said to be PPDR compliant if we can observe the following in it:

• node set conclusions are either written in SCL or they can be correctly,
completely translated from their original languages into SCL;



• inference step rules are specified in PPDR and the application of the rules
can be verified by matching PPDR specifications against inference step
premises and conclusion.

Many are the benefits of PPDR compliant PML documents including the
ability of performing the following:

• verifying if inference step are correct applications of inference rules;

• combining proofs on hybrid reasoning contexts;

• abstracting proofs by matching and replacing rules by more abstract de-
rived rules (explanation generation from proofs).

The rest of the paper is organized as follows. Section 2 introduces the PPDR
language specification. Section 3 describes how rules registered on the Inference
Web Base [2] are specified in PPDR and how these rule specifications can be
used to check PML proofs.

2 The Proof Protocol for Deductive Reasoning

2.1 SCL Schemas

Say that a schema is any expression of SCL in which some pieces of a certain
grammatical category (typically things like Sent(ence), Var(iable), Rel(ation
symbol) etc.) have been replaced by a schematic variable (or meta-variable),
with the corresponding type noted. So, as SCL schema has the general form

pattern ;; syntax-conditions

where

• the pattern is an SCL expression with schematic variables and substi-
tutions. The % sign is a schematic variable prefix on schema patterns
and expression pieces replaced by schematic variables are placeholders. A
schema pattern must have at least one placeholder. Patterns use p[s/t] as
a substitution meaning p with t substituted for s.

• the syntax-conditions are specialized SCL expressions specifying the types
of the schematic variables.

(implies %p %q);; (Sent %p %q)

is a schema for any SCL implication sentence. There, %p and %q are place-
holders for SCL sentences and their replacing variables must be SCL sentences.



2.2 List Notation

A notation for representing lists of schematic variables is required for SCL
schemas that can have a variable number of schematic variables of the same
type. Definitions for list ranges and lists are presented as follows:

• A list range has a left and a right boundaries connected by an ellipsis, e.g.,
1. . .m. Range boundaries can be either natural numbers or natural number
variables. The list range represents the sequence of natural numbers from
the left boundary to the right boundary, including both boundaries. If i is
the left boundary and j is the right boundary of an range and i > j then
the range is said to be “empty”.

• A primitive list of schematic variables is represented by a pair of curly
brackets containing two arguments: a label and a list range (e.g., { label,
range }). The list arguments are defined as follows:

– The label is the name of the list; Once a list is defined, it can be
referred as {label}. For instance, a list can be defined in the pattern
part of a schema and referred in the syntax-conditions part of the
schema.

• A derived list of schematic variables is represented by a pair of curly
brackets containing three arguments: a label, the label of a pre-defined
list, and a list of list elements (e.g., {label, from − list − label, [opera-
tion]list − element∗}). The arguments are defined as follows.

– The from-list-label identifies the list from where the current list is
derived. For example, {M,L,−%x} is “derived” from {L};

– The [operation]list-element* argument is a list of elements related
to derived lists. Each element is proceeded by an operation, which
defines the relationship between the element and the derived list. The
list of elements can have one or more elements, each one proceeded
by an operator. Currently just the “-” operation is specified and it
means that for lists {L, i. . .j} and {M,L,−%p} %p is an element
of {L} that was not added to {M} during the derivation process.
One can think {M} as the result of removing %p from {L}. Thus,
for example, if L is the set of elements in {L} and M is the set of
elements in {M} then M = L − {%p}.

By using the list notation, we can specify new kinds of SCL schemas. For
example,

(and {N,1. . .k}) ;; (Sent {N})

is a schema for any SCL conjunction sentence. The example above also shows
how the type of list elements are specified in syntactic conditions.



2.3 Rule Schema

In PPDR compliant PML documents, a proof is a structure (not quite a tree)
generated by rules which have the general form

name: premises |− conclusion ;; syntax-conditions ;; discharged-
sentences

where premises is a list of sentence schemas and conclusion is a sentence schema.
A proof schema is just like a rule with sentence-schema antecedents. The fol-
lowing example

ndUI: (forall ({L,1. . .n}) %q) |− (forall ({M,L,-%p}) %q[%t/%p]);;
(Var {L}) (Sent %q) (Term %t)

is a proof specification for any SCL universal quantification.
A more concrete example is the checking that the following rule is a correct

application of ndUI:

(forall (%a %b %c) %q) |− (forall (%a %c) %q[“foo”/%b])

is a valid application of ndUI since (forall (%a %b %c) %q) “fits into”

(forall ({L,1. . .n,%p}) %q) with n = 3 and L = {x1 = %a, x2 =
%b, x3 = %c}

and (forall (%a %c) %q[“box”/%p]) “fits into”

(forall ({M,L,-%p}) %q[%t/%p]) with M = L − {x2} = {x1 =
%a, x2 = %b, x3 = %c} − {x2} = {x1 = %a, x3 = %c}.

2.4 Syntax Conditions

Grammatical Categories

The specification of the grammatical category for a SCL schema placeholder is
given by the following predicates. we need to say something about these
types

• Sent(ence)

• Lit(eral)

• Clause

• Var(iable)

• Term



Unification

The following proof

GMP: {L,1. . .n}, (implies (and {L}) %q) |− %q ;; (Sent {L}, %q)

is an SCL proof schema for generalized modus ponens.
we GMP spec above is not complete yet since we still need to

specify its side-condition unification

Clausification

The following proof
we need to add a PPDR proof schema for resolution

is an SCL proof schema for bi-resolution.
A sintax-condition should specify that the premises are clausified

2.5 Sentence Discharge

The following proof

ndImplIntro: %p |− (implies %q %p) ;; (Sent %p %q) ;; %q

shows that %q was discharged in order to introduce the implication in the proof
schema conclusion. In a typical natural deduction proof, %q would be expected
to be an assumption of %q. The sentence discharge approach here, although
different, has the same effect since it discharges the occurrences of the sentence
%p in all the premise assumptions.

For natural deduction or-elimination we have the following:

ndOrElim: (or %p %q) , %r, %r |− %r ;; (Sent %p %q %r) ;; %p,
%q

In this case, the sentence %p was expected to be an assumption for one of
the %r premises while the sentence %q was expected to be an assumption of
the other %r premise. In PPDR, however, we do not need to specify where the
assumptions are specified. So, the effect would be the same if %p and %q are
assumptions on different %r premises and even if they are not assumptions for
any premise at all. In fact, the PPDR discharge approach means that sentences
are discharged if they are premise assumptions.

3 Proof Markup Language use of PPDR

I will describe the following in this section:

• Inference Web and PML support for the PPDR specification of
inference rules;

• An example of how PPDR specifications can be used for checking
combined proofs (proofs produced by different agents?).



4 Related Work

5 Conclusions

So, what is needed in the metalanguage is:

1. ways of indicating schemas by using metavariables over syntactic SCL
classes. We can do this using KIF notation itself with a predicate for each
syntax category, as illustrated.

2. a way to say that an assumption is ’closed’ by a rule, and I think this need
get no more complicated than the ORElim case above (that’s the worst
Ive ever seen)

3. a way to talk about substitutions of expressions for expressions within
other expressions.
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