
IWBase: A Justification Metadata Infrastructure

Deborah L. McGuinness Paulo Pinheiro da Silva
Cynthia Chang

Stanford University, USA,
{dlm,pp,csc}@ksl.stanford.edu

Abstract

If users are expected to depend on answers from applications and ser-
vices on the web, they need to have methods for asking for information
that will increase their understanding and their trust in the answers. One
way of increasing a user’s understanding and trust is to provide a summa-
rized or detailed description of how the answer was obtained. This process
would typically depend on some kind of proof structure defending the an-
swer but this alone (no matter how understandable and/or thorough the
proof is) is not enough. Any presentation of why a user should depend
on an answer also critically depends on metadata concerning elements
used in the proof such as underlying data sources, their authoritative-
ness, reasoning methods used, any uncertainties, etc. In this paper, we
introduce IWBase, a comprehensive OWL-based distributed and scalable
infrastructure for effectively creating, storing, evolving, and using proof-
related metadata for explanations. IWBase metadata is used to annotate
answer justifications encoded in the Proof Markpup Language (PML).
IWBase is currently in use by a number of DARPA and ARDA projects.

1 Introduction

Our research aims to improve user acceptance of answers by making them “ac-
tionable” and defensible. Answers will be actionable if users have enough in-
formation about the answer that allows them to believe the answer enough
to take action using the information. Answers are defensible if the user re-
questing the answer can understand and explain why the question answering
systems believes the answer is valid. Our work makes answers actionable and
defensible by providing explanatory information about the question answering
process that exposes how the answer was generated. Explanations depend on
provenance metadata and provenance metadata infrastructure to make answers
actionable and defensible. Without metadata, users may be unable to under-
stand explanations because, for example, they may be unable to gather critical
information about sources accessed, question answering systems, and inference
methods. Without metadata, tools may be unable to derive alternative (poten-
tially more understandable) explanations because the tools may not know which

1



rules (rewriting rules) to use for abstracting explanations. Without metadata,
users may not trust answers because because they may not have access to tools
that check the explanations and compute trust values for answers. Without
metadata infrastructure, it may become difficult for users (humans and agents)
to include, maintain, evolve, and query provenance metadata.

In this paper, we describe the metadata that is required in addition to an-
swer justifications1 to generate explanations that improve understanding and
trust. Answer justifications are encoded in the Proof Markup Language (PML)
described in [12]. These justifications may include information about the knowl-
edge sources used as well as the processes involved for accessing and integrating
knowledge. If answers are obtained simply by looking up stored information
in a data source, then justifications need to include provenance information
about the data source such as its recency, authoritativeness, etc. If answers
are retrieved from multiple sources and combined in some manner, then infor-
mation about all sources used as well as combination techniques needs to be
accessible to interested users. If answers are obtained by information manipu-
lation processes, then justifications need to be informed by descriptions of the
manipulation processes such as their authors, versions, inference strategies, and
assumptions. This kind of meta information is required in addition to the actual
proof trace of the manipulations that were performed.

It may be worth noting that our original explanation focus was on the infor-
mation manipulation area since our early target question answering applications
used reliable and familiar data sources and used complicated (and potentially
distributed) reasoning processes to reach conclusions. In those situations, users
were familiar with and trusted the source data but needed help in understanding
the deduction paths leading to conclusions. As our application focus expanded
to more typical web applications with diverse data sources, some of which were
likely to be unknown to users obtaining the final answers, it became clear that
providing the option of accessing provenance information was required, even if
just in a summary mode so that users could quickly check source usage. For ex-
ample, some question answering applications rely on knowledge bases that were
built and maintained using information extraction techniques, such as those in
UIMA [2]. The original data may be in free text sources where some of the
free text may be from known places and other text sources may be unfamiliar
(and of unknown quality and recency). Users obtaining answers based on these
knowledge bases need to have the option of finding out which raw text sources
were used, when they were updated, how they were transformed into structured
knowledge bases, and then later how the information was manipulated.

This paper introduces our research thrust on provenance metadata and its
associated infrastructure that, along with information manipulation traces, are
required to present comprehensible and useful explanations of answers. The pa-
per presents an example of an answer justification annotated with provenance
meta data. We introduce the terminology used in our provenance infrastruc-

1The terms justification, information manipulation trace and proof are used interchange-
ably in this paper s.



Figure 1: A typical proof

ture. We present IWBase as a distributed repository of proof-related metadata
that provides a solution to our provenance requirements. We introduce the ma-
jor components of our infrastructure (including registry and support services)
and describe how our solution is maintainable, scalable, distributable, while
supporting privacy and usability requirements. We will conclude with a discus-
sion of the relative merits of the approach, current and planned usage of the
implementation, and related work.

2 Metadata in Action: An Example

The need for provenance elements is compelling when any kind of meta-cognition
activity is performed that relies on proofs that describe the answer derivation
(or answer composition, answer extraction, etc.). For example, raw information
manipulation traces are often used by reasoner developers to debug their en-
gines. More sophisticated uses of proofs involve the exchange of proofs among
reasoners in a hybrid reasoning environment [13] or the use of proofs as an in-
put for generating human understandable explanations [8]. In these examples
and in many others, providing information to users that helps them under-
stand the information manipulations typically requires access to information
from the question answering systems about what they did and this is often un-
available. The rendering of a proof in Figure 1 has several examples of uses



of the IWBase elements. There, each statement is annotated with the name of
the engine responsible for adding the statement to the proof, i.e., JTP - Java
Theorem Prover [3]. Further, if a statement is derived, the proof is annotated
with the software responsible for the statement derivation in addition to the
source responsible for creating of the node set. For derived statements, the
proof is annotated with the inference rule applied by the engine to the state-
ment’s antecedents allowing the derivation of the consequent statement. For
example, in Figure 1, the generalized modus ponens rule was used to con-
clude2 that Joeseph Gradgrind had an office at GradgrindFood on April 1, 2003,
which is represented in the proof as“(Holds (hasOffice JoesephGradgrind
GradgrindFoods) Apr1 03)”.

The proof annotations mentioned above are just few examples of IWBase
elements that are associated with the proof in Figure 1. As presented in the
proof, provenance meta data is used to increase the understanding of proofs for
reasoner developers and even for other users not involved on the answer gener-
ation process, e.g., a user trying to understand how the answer was produced.
In Figure 1, each PML element in the proof is rendered as a hot link leading to
further information about proof elements.

3 Terminology

The IWBase architecture described in Section 4 has two main concepts: node el-
ements and the IWBase node. By defining node elements, we describe how meta-
data is classified and represented. By defining the IWBase node, we describe the
evolving infrastructure for storing, maintaining and using proof-related meta-
data on the Web.

3.1 Node Elements

Node elements3 are also PML elements. They are instances of PML classes,
which are OWL [9] classes. They are used to build OWL documents repre-
senting both proofs and proof provenance information. PML concepts can be
considered to be either proof level concepts representing proof elements directly
or provenance level concepts representing information about terms used in a
proof.

Proof elements are PML elements at the proof level. They are used for
building interchangeable, distributed proofs and explanations. NodeSet and In-
ferenceStep are the main types of proof elements. A NodeSet represents a step in
a proof whose conclusion is justified by any of a set of inference steps associated
with the NodeSet. Each node set has one URI. PML adopts the term “node
set” because each instance of NodeSet can be viewed as a set of nodes gathered
from one or more proof trees having the same conclusion. An InferenceStep

2This used three antecedents representing a provisional conclusion about Joeseph Grad-
grind’s office and the lack of atypicality with respect to Joeseph Gradgrind’s office.

3Terms defined in this Section are typed in bold.



represents a justification for the conclusion of a node set. Inference steps are
anonymous OWL classes defined within node sets. We assume that applications
handling PML proofs are able to identify the node set of an inference step and
thus inference steps have no URIs.

Provenance elements are PML elements describing the origin of proof
elements. ProvenanceElement is a superclass of the PML concepts at the prove-
nance level(such as source, language, and inference rule). A taxonomy of prove-
nance elements is shown in Figure 2. The ProvenanceElement attributes include:

Figure 2: Upper PML taxonomy of provenance elements

• The URI of a provenance element is the unique identifier of the provenance
element. Every provenance element has one well-formed URI, which is an
instance of the primitive type anyURI.

• The URL of a provenance element describes an URL used to browse an
element’s web document. For instance, if the provenance element is an or-
ganization named the New York Times, then the http://www.nytimes.com
URL can be used to access a web document about the organization. In
this case the URL points to the organization’s web site. A provenance
element can have zero or one URLs.

• The Name of a provenance element describes a short name (or “nickname”)
for the element within the IWBase. Every provenance element has one
name, and the name is an instance of the primitive type string.

• The Submitter of a provenance element represents the team of people4 re-
sponsible for the registration of the provenance element in IWBase. Every
provenance element has one submitter, and the submitter is an instance
of the type Team, which is a subclass of Source (see Figure 2).

4Of course a team can consist of any number of people including zero known members to
date or a single member.



• The DateTimeInitialSubmission of a provenance element is the date
when the provenance element was first registered in IWBase. Every prove-
nance element has one DateTimeInitialSubmission, and that is an in-
stance of the primitive type dateTime.

• The DateTimeLastSubmission of a provenance element is the last date
when the provenance element was registered in IWBase. Every provenance
element has one DateTimeLastSubmission, and that is an instance of the
primitive type dateTime.

• The EnglishDescription of a provenance element is a description in En-
glish of the provenance element. A provenance element can have zero or
one descriptions in English, and EnglishDescription is an instance of
the primitive type string. The description in English is intended to be
used by tools to present provenance elements to human agents. For ex-
ample, the description in English of the Modus Ponens inference rule may
be a better presentation and more informative for most users browsing a
PML document than the presentation of the formal logical specification
of the rule.

Provenance elements are formally specified in OWL5 and are briefly de-
scribed below. Further descriptions of provenance elements including the de-
scription of some relationships among provenance elements are available in [12].

A Source represents an entity which is the source of the original data. A
source can be either an Organization, an InferenceEngine, a Team, a Person
or a CreatedSource. CreatedSources can be Ontologies, Websites or, generally,
Documents. InferenceEngine is a source representing an engine that is able
to produce a justification for a given conclusion. Note that the use of the
term “inference engine” in this paper is not limited to engines with reasoning
capabilities. For example, a search engine retrieving information may serve
as an inference engine and it may provide a justification of its answer by a
direct assertion inference step. Similarly extraction modules may be viewed
as inference engines and, in fact, we have registered a number of extraction
modules from the UIMA extraction toolkit[2] so that extracted answers may be
explained in Inference Web using PML[11].

The Language provenance element is used to encode a language used to write
conclusions of node sets. Any language can be registered in IWBase including
formal logical languages, such as KIF, and natural languages, such as English,
and representation languages such as DAML+OIL and OWL.

An InferenceRule is a specialization of ProvenanceElement used for describ-
ing rules applied to premises deriving node set conclusions. An InferenceRule
can be either a PrimitiveRule or a DerivedRule. A PrimitiveRule is a type of an
inference rule that is implemented by one or more inference engines. A given
rule R1 may only be called primitive when it becomes associated with one or
more inference engines. Thus, assuming that R1 is implemented by an inference

5The PML ontology version 0.9.2 is available at http://iw.stanford.edu/2004/07/iw.owl



engine E1, the inference engine may declare R1 to be a primitive rule. The
notion that R1 is a primitive rule for one specific engine is relevant since R1

may also be derived from R2, which is a primitive rule for another engine E2.
In this case, R1 may be registered once as a primitive rule and zero or more
times as a derived rule, depending on how many combinations of rules are used
to derive R1. A DerivedRule is an InferenceRule specified from a PML node set
schema with the restriction that each node set schema must have one and only
one inference step.

3.2 IWBase Node

IWBase Node critically depends on the IWBase registry, IWBase registrar and
IWBase configuration file so we will define these first.

An IWBase registry is a repository of provenance elements. In order to
support interoperability when sharing provenance metadata among Inference
Web tools and between Inference Web tools and other Semantic Web tools in
general, elements in the registry are stored as PML files. Thus, with the use
of Semantic Web tools, one can retrieve, parse, and use proof-related meta-
data. For querying and maintaining large quantities of metadata, the parsing
of PML files has shown to be too expensive. Therefore, to increase scalability,
provenance elements are also stored in a database.

An IWBase registrar is a collection of applications used for maintaining
a registry. From a human user point of view, the registrar is an interactive
application where the user can add, update, and browse the registry contents.
From a software agent point of view, the registrar is a collection of services for
querying and updating the registry. The registrar is responsible for keeping the
synchronization between the registry repository of OWL files and the registry
database.

An IWBase configuration file contains configuration and deployment in-
formation for IWBase node applications. Information is defined as parameters
in name/value pairs and is loaded at application startup time. Global param-
eters are shared among all applications deployed on the node. Each IWBase
application deployed on the node has its own collection of parameters, which
can override global parameters.

An IWBase node is a named collection of computing resources available
on a machine. One machine may have multiple nodes. In concrete terms, a
node is characterized by having the following resources:

• a registry;

• a registrar;

• access to read and write in a filesystem in order to store the registry, the
registrar and any optional IWBase applications;



• access to a web server platform6 supporting servlets/JSP and SOAP ser-
vices, user authentication and authorization;

• permission to change the configuration of the web server;

• access to a database in a relational database management system (DBMS)7

including the following: permission to update the schema of the database,
permission to add and update tuples in the database;

• a collection of optional applications based on IWBase elements;

• a configuration file used to set parameters for the registry, some parameters
for the web server and DBMS, and parameters for IWBase applications
installed on the node.

One machine is allowed to have multiple nodes. Nodes on a common machine
may share filesystems, web servers and DBMSs. However, to accommodate its
registry, each node needs to have a non-shared directory in a shared filesystem
for the OWL files and a non-shared database.

3.3 IWBase Applications

An IWBase application is an application installed under an IWBase node
web server, using the IWBase configuration file, and providing some function-
ality that depends on PML elements of the node. The registrar is an IWBase
application.

Engines can use any strategy for creating PML documents including the
use of PML generation services (PGSs), the use of the PML API, or even
the implementation of their own code to generate PML documents. IWBase
node’s PGSs provide support for querying the registry through a combination
of queries to database(s) and OWL files. In addition to the use of indexes for
querying the registry, PGSs provide a mechanism for selecting and associating
provenance elements with proof elements. Even if none of those services are
critical for applications, users may still choose to use PGSs since they provide
an uniform way of generating PML documents thus supporting consistent usage
if the PML specification evolves.

We envision the addition of many IWBase applications to IWBase nodes.
For instance, at the moment we are developing an AnswerTrustComputation
service[14] to compute trust values for answers. These services rely on a com-
bination of trust relations, some of which are already implemented in IWBase.
These services are supported by a trust network of users and node elements.

6IWBase currently has support for Tomcat and Axis.
7IWBase currently has support for MySQL.



4 Architecture

We use the term IWBase to refer to an hypothetical “entire” collection of
IWBase nodes, whether nodes are interconnected or not and whether nodes are
available for use or not. In this section we discuss the different types of nodes and
node inter-communications in IWBase. Before discussing node configurations,
we may need to briefly discuss the roles of IWBase users.

4.1 Users

IWBase users can play one or more of the following roles when interacting with
an IWBase node.

A node visitor is some “web user”, human or agent, using the node either to
inspect the registry or to interact with the registrar for the purpose of browsing
node elements. Node visitors do not need to be registered with the node and
do not have ownership of node elements. In public nodes, node visitors may
browse the entire content of the registry.

A node member is some user, human or agent, using the registrar for
maintaining node elements. Node members are registered with the node admin-
istrator so that the may have access to the registrar for adding and updating
node elements. Node members are also registered as members of PML Teams
(a PML provenance element).

A node administrator is a human user responsible for the following tasks:
maintaining and tuning the IWBase node web server and DBMS, creating node
members, adding and removing IWBase applications, and setting IWBase ap-
plication parameters in the node configuration file.

4.2 Nodes and Node Associations

An IWBase node is either a core node or a domain node. Some PML ele-
ments such as InferenceEngine, InferenceRule, and Language (see Figure 2) are
used in all Inference Web applications and they are collected in a core node.
The core node is publicly available to all other IWBase nodes. The current
demonstration registrar for the core node is available at: http://inferenceweb-
.stanford.edu/iwregistrar/ and is one example core node. The core node archi-
tecture is convenient when there is one set of entries that describe the main
meta information about the common engines, their rules, and representation
and reasoning languages. Empirically, we have found our current uses of Infer-
ence Web benefit from such a core node. Domain ontologies and their related
meta information can vary widely from project to project and thus projects
benefit from having project-specific domain nodes. Just as the notion of “up-
per ontologies” is both popular and contentious, we anticipate some upper level
ontologies to emerge that are popular enough and reused enough that Inference
Web users will find that it may be beneficial to have these included in the core
node registry. Alternatively, a user can have nodes owning entries for relevant



ontologies associated with domain nodes where the user is a node member as
described below in this section. We expect these decisions to evolve with usage.

Private and public nodes. IWBase relies on typical internet and web
security apparatus, i.e., firewalls, for protecting access to node metadata. A
public node implements no restrictions for web users or agents to access the
node’s contents. If any kind of restriction is enforced, the node is private.
Other than the core node that is always public, nodes can be either public or
private.

The IWBase architecture also specifies some services supporting the collab-
oration between the nodes described as follows:

Domain node–domain node associations. Inter-domain communica-
tions are accomplished by configuring association links between nodes. An
association link from node B to node A means that services provided by node
B are based on meta-information coming from both B and A. To illustrate
the usefulness of association links, assume a link from a vehicles node to cars
node. Thus, automated services for browsing the registry of vehicles would list
elements registered both in vehicles and cars. In this case, vehicles could lever-
age the relevant list of sources about cars available in cars. Moreover, vehicles
could set association links to other domain nodes, such as bicycles, increasing
the amount of meta-information available to proofs. Association links increase
elements’ re-usability, eliminate data duplication among domain nodes, and help
prevent inconsistency.

Mirrored core registry. Information in the core node registry is required
for running services for a domain node, such as proof generation services. In
certain situations, however, node services may be unable to access the core node,
i.e., when a domain node how no internet connectivity. In other situations,
although a domain node may have internet connectivity, the cost of getting
information through the web can be too expensive or unreliable, and having
a local copy of the core registry reduces the internet traffic. If any of these
situations occurs, domain node administrators have the option of copying the
content of the core registry to a local filesystem and setting the domain node
configuration file to point to the local copy of the core registry, referred to as the
mirrored core registry. The currency of the mirrored core registry depends on
how often the domain node administrator updates the copy. Core node elements
are only registered and maintained by the core node registrar and elements in
the mirrored core registry are not supposed to be updated.

Core node–domain node associations. Every domain node must have an
association with either the core node or a mirrored core registry. The association
is required since some classes of provenance elements supporting services in the
domain node, such as Language and Inference Engine, are available only in the
core registry. Using the configuration file, a domain node administrator can
choose which core registry to use.



5 Discussion and Status

In this section, we will return to our goals and summarize our contributions
with respect to those goals. Our approach is distributed in that it supports a
number of IWBase nodes. The IWBase core node contains information common
to applications using proof-related metadata. The registry for the core node
could be either local or remote. IWBase may have multiple domain nodes that
contain information specific to any particular application. There is no limit to
the number of domain nodes and they can be physically located on any machine.
IWBase administration is also distributed since node administrators may make
the decisions about who can make updates by registering other members and
administrators.

The scalability of our approach is supported from a few perspectives. We
have utilized a database back-end for IWBase so that we may leverage the scala-
bility and efficiency of DBMSs for querying and updating databases. We also do
not require registration of all meta data in our repositories; as long as meta data
is accessible, that is all that is required. For example, in our joint effort with
IBM to explain text analytics, we found the sheer volume of information to be
enough to drive us to use a special purpose repository that is tuned to the needs
of text extraction. This database is accessed when PML proofs are generated so
that provenance information is available for explanations on demand but is not
pro-actively registered in IWBase for all possible content. Additionally, when
we designed the Proof Markup Language, we chose to represent it in OWL and
stayed within the description logic (DL) portion of the language. Thus, when
we rely on reasoning with the OWL representations, we can claim the same effi-
ciency of reasoning that OWL-DL can claim. OWL-DL was designed specifically
to be a language for which efficient reasoners may be implemented.

The IWBase infrastructure includes tools to help minimize maintenance ef-
fort. This is intentional since we understand that the quality of explanations
will be related to the quality and recency of the provenance metadata. We in-
clude a registration service that supports automatic registration of sources. We
also have included many reasoners and inferences in the core node in the hopes
that new registrations of components will be more likely to require identification
of registered items that may be reused rather than requiring original specifica-
tions of new inferences. We also provide checking services to identify if PML
dumps are consistent in their usage with the inference rule registrations that
they claim to contain8. The IWBase solution addresses privacy using internet
and web security apparatus as described in Section 4.2. Nodes can be private
or public and access to update the IWBase requires registration. While this
solution has been adequate to date, we do anticipate augmenting our privacy
solution in order to address more of the concerns of the intelligence community.

The primary contributions of our work with respect to provenance metadata
infrastructure for explanations revolves around specifications, infrastructure,
and tools. We have gathered requirements from a broad diversity of users from

8See http://iw.stanford.edu/infmldescription.html for more information.



many perspectives - backgrounds, usage, sophistication, etc. We have collected
the requirements in one place and have provided a description of a solution ar-
chitecture that meets these requirements. The solution is not only described in
papers but is also implemented in a freely available, open-source implementation
distributed through the Inference Web website9 and soon through SemWebCen-
tral10. This implementation can serve as infrastructure for other’s explanation
and trust efforts, or if required, it could serve as an operational specification
and starting point for someone to generate their own customized solution. Our
approach is also modular and stresses interoperability so one could, for exam-
ple, use our IWBase core node, some existing domain nodes, some new internal
domain nodes, our proof generation services, and an internal interface/browser
interface.

IWBase, as part of the Inference Web, is gathering users and is currently
integrated with a large text analytics tool suite - UIMA. It has been integrated
with the JTP hybrid reasoning engine and is being used by a number of projects
that require explanations of hybrid reasoners - in particular in the CALO project
of the DARPA PAL program. As a result, it is explaining results from applica-
tions such as ISI’s Ariadne system [7] where it must explain where information
came from after web scraping is done and how queries are broken up into smaller
queries that can answer a larger question. It is also being integrated with SRI’s
SPARK system [10] where it needs to explain task-oriented processing. It is also
being used by the KANI project within ARDA’s NIMD program which means it
needs to range from explaining text analytics to temporal reasoning to context
reasoning with hypotheticals.

Work is proceeding to both broaden and deepen IWBase capabilities. Since
explanations are improved when metadata information is more current and more
complete, we continue to improve the registration services. Currently IWBase
has services providing automatic support for maintaining node elements. There
are still open issues concerning automated inclusion of attributes to sources.
For instance, an agent needs to select and add authors to a registered document
but it may have difficulty since it is required to select the appropriate metadata
corresponding to the authors. We are also adding an automatic configuration
service that helps users register their question answering components.

We are also working to support more flexible security strategies for accessing
domain nodes behind firewalls. For instance, some organizations may require
their domain nodes to be behind a firewall but they still want selected external
users to access parts of their registries.

6 Related Work

When we first specified our metadata registry requirements, we did a litera-
ture search and did not find any existing solution that we believed could meet
our requirements. Our initial approach was to extend Stanford’s WebBase [6]

9http://iw.stanford.edu
10http://www.semwebcentral.org/



to register proof-related metadata. We learned from our own work and that
of Heery [5] that accessing metadata can be quite complex. IWBase requires
elements to be grouped and indexed by their types. This led us away from an ap-
proach such as WebBase that indexes through a uniform attribute. We decided
to design an solution for registering metadata that was based on a combination
of a web repository and of a database system.

An agent’s ability to share metadata with other agents is a major reason for
IWBase to store proof-related metadata in the registry as OWL files. In fact,
the lack of a standard format for metadata was a concern in previous efforts to
build metadata registries [1].

The Dublin Core Metadata Initiative (DCMI)11 is probably the best-known
collection of bibliographic metadata. In the PML provenance element taxon-
omy, Document is the element representing Dublin Core metadata. Document
is the only non-extensible PML element and it is expected to conform with
DCMI. Furthermore, DCMI does have a registry12 for storing and maintaining
DCMI metadata and the registry shares a number of functional requirements as
described in [4] with IWBase. For instance, the IWBase and DCMI Registry
are expected to store reliable trusted information, to provide authoritative defi-
nitions, and to manage the evolution of their elements. One difference between
IWBase and DCMI Registry is that IWBase includes instances of metadata
types.

There are many registries of domain-specific metadata available on the web.
For example, the DoD Metadata Registry and Clearinghouse13 is a domain-
specific registry of software related metadata for use by the U.S. Department
of Defense. Other government agencies throughout the world have their own
registries. In the future, we expect applications that use government registries
such as this and/or maintainers of this registry to use information from IWBase.

7 Summary

This paper presents IWBase as a distributed, scalable, maintainable provenance
metadata infrastructure with a privacy strategy. Provenance metadata in IW-
Base may help users to understand and trust answers from applications and
services on the web. We gathered a set of requirements for provenance metadata
for web applications and designed and implemented a solution that addressed
these requirements. Specific contributions from this effort include:

• A distributed registry of provenance metadata with a taxonomy of prove-
nance elements specified in an interoperable proof interlingua (PML) based
on the W3C Recommendation for a Web Ontology Language(OWL).

• A registrar that provides support for the registration and maintenance of
provenance metadata. For humans, the registrar provides its functional-

11http://dublincore.org/
12http://dublincore.org/dcregistry/
13http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal



ities through an interactive interface. For computer agents, it provides
automated services.

• Services for generating proofs in PML, checking those proofs against infer-
ence specifications, abstracting those proofs into understandable explana-
tions, and computing trust values for answers supported by those proofs
and explanations. We are able to provide these services because of the
infrastructure for provenance metadata.

IWBase is being used to support explanations of question answering applica-
tions that range from text analytics and aggregation to hybrid theorem proving
in academic, industrial, and government settings.

Acknowledgments

The authors would like to thank the following programs that funded portions of
this work: DARPA’s DAML and PAL programs and ARDA’s NIMD program.
Additionally, we gratefully acknowledge valuable comments from Jose-Luis Am-
bite, Priyendra Deshwal, J William Murdock, and Ilya Zaihrayeu.

References

[1] Christophe Blanchi and Jason Petrone. Distributed Interoperable Metadata
Registry. D-Lib Magazine, 7(12), December 2001.

[2] D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Un-
structured Information Processing in the Corporate Research Environment.
Journal of Natural Language Engineering, 10(3/4):327–348, June 2004.

[3] Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP: A System Archi-
tecture and Component Library for Hybrid Reasoning. Technical Report
KSL-03-01, Knowledge Systems Laboratory, Stanford University, Stanford,
CA, USA, 2003.

[4] Rachel Heery. Draft DCMI Open Metadata Registry Functional Require-
ments, October 2001. http://dublincore.org/groups/registry/fun req ph1-
20011031.shtml as accessed on 6 Nov 2004.

[5] Rachel Heery and Harry Wagner. A Metadata Registry for the Semantic
Web. D-Lib Magazine, 8(5), May 2002.

[6] Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and Andreas Paepcke.
WebBase : A repository of Web pages. Computer Networks, 33(1-6):277–
293, May 2000.

[7] Craig A. Knoblock, Steven Minton, Jose-Luis Ambite, Naveen Ashish, Ion
Muslea, Andrew G. Philpot, and Sheila Tejada. The ariadne approach
to web-based information integration. International Journal of Coopera-
tive Information Systems (IJCIS), Special Issue on Intelligent Information
Agents: Theory and Applications, 10(1/2):145–169, 2001.



[8] Deborah L. McGuinness and Paulo Pinheiro da Silva. Trusting Answers
on the Web. In Mark T. Maybury, editor, New Directions in Question
Answering, chapter 21. AAAI/MIT Press, October 2004.

[9] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontol-
ogy Language Overview. Technical report, World Wide Web Consortium
(W3C), December 9 2003. Proposed Recommendation.

[10] David Morley and Karen Myers. The SPARK Agent Framework. In Proc. of
the Third Int. Joint Conf. on Autonomous Agents and Multi Agent Systems
(AAMAS-04), 2004.

[11] J. William Murdock, Paulo Pinheiro da Silva, David Ferrucci, Christopher
Welty, and Deborah L. McGuinness. Encoding Extraction as Inferences.
In Proc. of AAAI Spring Symposium on Metacognition on Computation,
pages 92–97, Stanford University, USA, 2005. AAAI Press.

[12] Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes. A
Proof Markup Language for Semantic Web Services. Information Systems,
2004. (to appear).

[13] Jörg H. Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad
Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek, Michael
Kohlhase, Andreas Meier, Erica Melis, Markus Moschner, Immanuel Nor-
mann, Martin Pollet, Volker Sorge, Carsten Ullrich, Claus-Peter Wirth,
and Jürgen Zimmer. Proof Development with OMEGA. In Proceedings
of 18th International Conference on Automated Deduction, volume 2392 of
LNCS, pages 144–149, Copenhagen, Denmark, July 2002. Springer.

[14] Ilya Zaihrayeu, Paulo Pinheiro da Silva, and Deborah L. McGuinness.
IWTrust: Improving User Trust in Answers from the Web. In Proc. of
iTrust2005, Rocquencourt, France, 2005. Springer. (to appear).


