A Coloured Petri Net Formalisation for a
UML-Based Notation Applied to Cooperative
System Modelling

José Luis Garrido and Miguel Gea

Dpt. Lenguajes y Sistemas Informaticos, University of Granada,
E.T.S.I. Informatica, C/Daniel Saucedo Aranda s/n, 18071 Granada, Spain
http://giig.ugr.es
{jgarrido,mgea}Qugr.es

Abstract. New approaches are currently being adopted to address the
development of cooperative systems, although not many standards exist
that can be used to develop this type of interactive system. We apply the
standard Unified Modelling Language (UML) notation within a method-
ology aimed at the analysis and design of such systems, and present a
semantic formalisation of the UML notation used to model cooperative
systems. The semantics and its application are described on the basis of
translation schemes to Coloured Petri Nets and the benefits of formali-
sation are shown.

1 Introduction

To date, Computer-Supported Cooperative Work (CSCW) [15] has compre-
hended various systems: Workflow Management Systems (MfMS), computer-
mediated communication (CMC) (e.g. e-mail), decision support systems, shared
artefacts and applications (e.g. shared whiteboards, collaborative writing sys-
tems), meeting systems, etc. These can be categorised in several ways. One of
these is by the function that the system performs, and another interesting one
is based on two dimensions: time (synchronous or asynchronous) and space (co-
located or remote). The outcome matrix is very useful to refer to the particular
circumstances that a groupware application aims to address. Groupware [6lj3]
has been defined as a computer-based system that supports groups of people en-
gaged in a common task (or goal) and that provides an interface to a shared
environment. We note that in the set of fields and systems embraced by CSCW
there are many explicit and implicit related concepts. These tend to either log-
ical or technological aspects, such as interaction, communication, coordination,
information, group, behaviour, distribution, control, etc. An additional difficulty
is that the same term is frequently used in two or more fields but with differ-
ent meanings and implications. For instance, human-computer interaction (HCI)
particularly addresses psychological and computer issues; on the other hand, in
human-human interaction within group activities, social issues acquire more rel-
evance. An introductory study of the concepts involved in specifying the general
principles and properties of CSCW systems is presented in [7].

P. Forbrig et al. (Eds.): DSV-IS 2002, LNCS 2545, pp. 16-28] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

A Coloured Petri Net Formalisation for a UML-Based Notation 17

The development of groupware applications is more difficult than that of a
single-user application, because social protocols and group activities must be
taken into account for a successful design [12], and so techniques aimed at en-
hancing group interaction activities should be applied. The inherent complexity
of any interactive system requires a great deal of effort in the formulation of
specifications, and formal methods may be used to achieve this goal [2[13]. At
the modelling stage, support should be provided to study the system being de-
veloped.

The work presented in this paper is part of a new methodology called
AMENITIES [9] (acronym for A MEthodology for aNalysis and desIgn of coop-
eraTIve systEmS). This methodology is based on behaviour and task models for
the analysis and design of generic cooperative systems. The set of behaviour and
task models (called Cooperative Model of AMENITIES) is a conceptual model
which comprises the foundation of the methodology. The paper shows how to
formalise the semantics for the Cooperative Model, which uses a UML-based
notation, by describing translation schemes to Coloured Petri Net (CPN) for-
malism [T4]. The paper is organised as follows. Section [2 reviews related work.
Sect. Bl justifies the use of CPN formalism to define UML semantics. The con-
ceptual framework for the Cooperative Model is introduced in Sect. dl and an
application example of this model is presented in Sect. Bl Then, on the basis
of the example provided, the question is addressed of how, formally, to repre-
sent the model to be studied (Sect. @). Finally, Sect. [[] summarises the main
conclusions.

2 Related Work

Several approaches have been proposed to specify cooperative systems, focused
on representing user tasks [T9]. Thus, the system specification is a collection
of user goals each of which is defined by the sequence of tasks that allow us
to achieve a desired objective. Several notations have been proposed, such as
GTA (Groupware Task Analysis) [29] and CTT (ConcurTaskTrees) [22]. GTA
proposes an ontology-based system study for task world models, that is, a frame-
work in which participants (agents and users’ roles), artefacts (objects) and sit-
uations (goals, events) take place. Moreover, a set of relationships between these
are clearly identified (uses, performed-by, play, etc). CTT provides a hierarchical
graphical notation to describe concurrent tasks, and allows us to specify coop-
eration by adding a hierarchical specification with temporal constraints for each
cooperative task. This extension and others aim to establish common tasks for
several users and the relationships between them. An approach describing both
task and system models by means of a dialect of Petri Nets (ICO formalism) is
presented in [21], demonstrating how formal task models improve the design of
interactive systems.

These task-based approaches study the system from the user’s point of view,
describing the cognitive skills required for correct use. However, most such tech-
niques do not consider certain dynamic aspects in the problem domain [I8]. For

18 J.L. Garrido and M. Gea

example, the user’s role may change during real situations (e.g. the responsibili-
ties in an office department), and the ways in which the objectives to be achieved
may vary (e.g. a new commercial strategy, different work organisation). Thus,
group organisation and evolution over time should be taken into account when
social organisations are described.

On the other hand, our work is based on UML notation to describe co-
operative systems by extending task-based approaches with ethnographic and
cognitive issues. The advantage of this election is the use of a standard suc-
cessfully adopted in software engineering. However, it is a semi-formal notation
and various proposals have been made to formalise UML for different purposes,
including:

— Stochastic Petri Nets, derived from UML statecharts and a collaboration
diagram, for performance analysis [16].

— Validation of architectural software design with UML collaboration diagrams
using CPN behavioural templates [23].

— Development of the CPN of a system by deriving Object Oriented Petri Nets
Models from UML statecharts and connecting them using UML collaboration
diagrams [26].

— Defining formal operational semantics by transforming UML state diagrams
into graphs [11].

— Giving execution semantics for UML activity diagrams intended for workflow
modelling [5].

— Definition of a semantics for collaboration and activity diagrams based on
Place-Transition Petri Nets with informal inscriptions [10].

In general, these proposals focus on software analysis or toolkit construction
for code generation, although some consider workflow modelling using activity
diagrams.

3 UML Semantics versus CPN Semantics

The OMG Unified Modelling Language Specification [20] (in its current ver-
sion 1.4) specifies syntax and informal semantics of the notations embraced by
UML. This specification is clearly focused on software models. In particular,
with respect to the behavioural UML notations that we use for the cooperative
model of AMENITIES, the following text appearing in this reference should be
highlighted:

1. Statecharts. “A statechart diagram can be used to describe the behaviour
of instances of a model element such as an object or an interaction... The
semantics and notation described are substantially those of David Harel’s
statecharts with modifications to make them object-oriented”.

2. Activity diagrams. “An activity graph is a variation of a state machine in
which the states represent the performance of actions or subactivities... It
represents a state machine of a procedure itself”.

A Coloured Petri Net Formalisation for a UML-Based Notation 19

A statechart (or activity diagram) is a graph that represents a state ma-
chine. The relationships between a state machine and its context have no special
notation. The state machine also provides the semantic foundation for activity
graphs. The specification document provides, for statecharts and activity dia-
grams, both a specification of the notation (graphic syntax) and an informal
definition (in English) of their semantics.

The semantics of a UML state machine (i.e. the metamodel) is described in
terms of the operations of a hypothetical machine that implements a state ma-
chine specification. Thus, this operational semantics is defined by the following
key components:

— A queue of incoming event instances to be dispatched.

— The dispatcher mechanism for event processing.

— An event processor that processes dispatched event instances according to
the general semantics and the specific form of the state machine in question.

Our main motivation in describing the semantics of UML notation applied to
CSCW systems by using CPNs is that the existence of several variation points
allows different semantic interpretations that might be required in different ap-
plication domains. This is usually our case, and so high-level Petri Nets are used
for the formal specification. This provides the following advantages:

— CPNs provide true concurrency semantics by means of the step concept, i.e.
when at least two non-conflictive transitions may occur at the same time.
It is the ideal situation for our application domain, as the model must be
supported by a multithreaded state machine (several actors moving within
the same space of states).

— The combination of states, activities, decisions, data, events and complex
transitions (namely fork-join constructions) means that the UML state ma-
chine notation is very rich. CPNs allow us to express, in the same formalism,
both the kind of system we are dealing with and its execution.

— Formal semantics is better in order to carry out a complete and highly auto-
mated analysis (i.e. validation and verification of properties) for the system
being designed.

4 Framework

The cooperative model of AMENITIES, which is the core of the methodology,
adopts an overall view of a system. Hence, the system embraces computer-based
systems as well as the end-users themselves and related aspects such as organi-
sation, communication, collaboration [27] and coordination [I7]. This paper does
not deal with the user’s behaviour except that related to the interaction between
different users. It is even possible to model interactions in which no computer-
based system is involved [8]. The model allows us to carry out task analysis and
modelling, as well as represent other related aspects such as roles, capabilities,
constraints, etc. The notation used is basicly that of UML [25] only that instead

20 J.L. Garrido and M. Gea

of applying it to specify concrete classes for implementation, we consider other
more abstract classes (group, role, ...) in the domain of cooperative systems.
Because the emphasis is to study behaviour rather than structural aspects, class
diagrams are not shown in this paper.

Several definitions of framework have been made, depending on the level
where it is applied. In this context, a framework should give a higher common
abstraction level between a family of related systems to be described in terms
of general concepts. Thus, a framework is a pattern encompassing the principal
common concepts of a kind of system and the relationships between them.

We define the basic terminology as follows. An action is a basic unit of
work, executable atomically. A subactivity is a set of related subactivities and /or
actions. A task is a set of subactivities intended to achieve certain goals. A
role is a designator for a set of capabilities to carry out work, including tasks,
skills, constraints and responsibilities/authorities. An actor is a user, program,
or entity that can play a role in the execution of, or responsibility for, tasks. A
cooperative task is one that must be carried out by more than one actor, playing
either the same role or different ones. A group is a set of actors playing roles and
organised around one or more cooperative tasks. A group may be composed, i.e.
formed from related subgroups. A constraint (also called a law) is a limitation
imposed by the system that allows it to adjust the set of possible behaviours
dynamically. Finally, a capability is a constraint that directly affects an actor or
group, enabling them to respond to new challenges offered by the system, as a
result either of external events or of internal events produced by the interaction
between participants (i.e. actors, groups or the system itself).

The method for building the cooperative model (as is shown in the next
section) is based on two key concepts defined above: work and group. We use
the notion of task to structure and describe the work that must be performed by
the group. This provides the way to translate work, i.e. something that is tacit
and implicit, into something that is concrete and explicit. Nonetheless, tasks are
also considered at a very abstract level as noted above. A group, on the other
hand, can be more or less explicit. Sometimes organisational aspects determine
the way people work, but in other cases personal and/or operational aspects are
the basis for organising people in order to perform an activity. The notion of
role, in any case, allows us both to specify groups as needed and to establish
dynamic relations between actors and tasks.

5 Example of Cooperative Model

As an example to introduce the syntax and semantics of statecharts and activity
diagrams of UML according to the application domain (i.e. cooperative work),
we have modelled the current system used in Emergency Coordination Centres
in Sweden and the U.S.A. [I]. These systems were designed and implemented
fulfilling the control requirements of extreme situations. The Centre distributes
tasks and is responsible, in the case of large-scale accidents, for the coordination
of the organisations involved (police, fire brigade and medical help), until all

A Coloured Petri Net Formalisation for a UML-Based Notation 21

units have arrived at the scene of the accident. At that point, the fire brigade
takes over responsibility for coordination. The main goal is to assign and manage
resources as fast as possible, as well as to assess the particular conditions of each
emergency. The sequence of steps to build the cooperative model is shown in the
following subsections.

5.1 Organisation Group

The first step in the method is to specify groups by means of UML state-
charts, as shown in Figure Ia) . This is based on identifying the related roles,
there is one state for each role. The concept of role allows us to state the dy-
namic connections between actors and tasks. Thus, the basic structure of the
organisation is described: actors play the roles Operator, AssistantOperator
and ResourceResponsible. In this case, capabilities (e.g. guard [operator?])
initially determine which role is played by each actor, depending on his/her
professional category, specialisation and/or skills. It also specifies (e.g. guard
[FreeOperators=0]) under which constraints dynamic behaviour changes must
be produced, sometimes as a result of interactions between members of the group.

group CentreStaff

role AssistantOperator

role Operator role AssistantOperator
interruptible-tasks
by Operator.

EmergencyCall / FreeOperators -

cooperative-task ResolveEmergency

| FreeOperators ++

AssistenceCall / FreeOperators --

cooperative-task ResolveEmergency

I FreeOperators ++

(b)

Fig. 1. (a) Group definition (b) Role definitions

5.2 Role Definition

Actors’ knowledge of the system is determined by the functionality of the latter.
In Fig. [(b) the tasks that can or must be performed are identified. Thus, each
role is actually a UML composed state including a submachine for each task that
can/must be performed. Here, the defined roles collaborate on the single task
ResolveEmergency. For the role AssistantOperator, the task being performed
can be interrupted (section interruptible-tasks) if there is a new emergency.

22 J.L. Garrido and M. Gea

In this situation, the actor will behave as Operator in order to respond to this
new emergency.

5.3 Task Definition

The next step describes by means of UML activity diagrams the subactivi-
ties/actions needed to carry out each task (Fig. Bl). By means of sequential (ar-
rows) and concurrent (thick bars) constructions, temporal- ordered constraints of
subactivities are specified. Diamonds may also be used to specify decision points
involved in certain strategies during task performance. For each subactivity or
action, the task definition includes specifying those responsible and the optional
roles needed to accomplish it. Optional roles are shown between brackets and
the symbol ’|” specifies an inclusive-or relationship. This role specification is an
extension to UML swimlanes for activity diagrams.

a N

cooperative-task ResolveEmergency

Operator:
TakeCall

Operator / Caller
protocol Request/Reply:
InterviewCaller 3=

v
3

Operator + [restof(CentreStaff)]
protocol conversational:
DecideRescue
Operator: {& [approved] [OperatorAlone]
IdentifyCaller
fy lore

rejected] J/[OperatorNotAlone]

Operator:
AskAssistence

AssistenceCall
(Operator | AssistantOperator) + [ResourceResponsible]
protocol conversational:

DecideRescueUnits =
Operator | AssistantOperator:
DispatchUnits 5=
Operator | AssistantOperator:
WaitBrigade TakesResponsibilit

2

$€—| BrigadeTookResponsibility <

Operator:
RegisterCaLv:

Fig. 2. Task Definition

A Coloured Petri Net Formalisation for a UML-Based Notation 23

5.4 Specification of Interactions between Actors

The above task definition includes several tasks to be carried out by means of
interaction protocols. For instance, the subactivity InterviewCaller specifies
the type of protocol Request-Reply that should be used to accomplish this, as
well as the participants involved: Operator asks and Caller answers. On the
order hand, the activity DecideRescueUnits specifies a conversational protocol,
i.e. any participant can take part in this activity in any order and with the same
degree of responsibility.

6 Semantics for the Cooperative Model

This section states the foundation of a specific semantics for the cooperative
model. The idea is to be able to automate the behavioural analysis for the coop-
erative system by making explicit concurrency, non-determinism, synchroniza-
tion and resource sharing. CPN can be sujected to various Petri Nets analysis
techniques which aid in the validation of UML behavioural specification.

6.1 Translation Schemes from UML to CPN

In the following subsections, we discuss the key points in formally defining nota-
tion semantics according to the application domain. This is obtained by translat-
ing elements of the cooperative model to CPN components, as shown in Fig. [3]
which is the corresponding CPN for the above modelling example. The sub-
net ResolveEmergency in Fig. [3(b) is for the transition with the same name in
Fig. Bl(a).

State/Activity Mapping. There exist two general alternatives to apply trans-
formations from the cooperative model to the CPN model:

1. Identify subactivities with places in the CPN, allowing them to be inter-
rupted (if necessary) in a direct way. In a cooperative system, there are
both atomic and non-atomic activities, subactivities and actions respectively.
Subactivities can be interrupted (if specified), such that the actors playing
them may leave and return to the subactivity later. For example, the actor
playing the role AssistantOperator in Fig. [can abandon the subactivity
DecideRescue during its performance.

2. Conversely, the other possibility is to identify subactivities with transitions.
At first glance, no activity could be interrupted since transition firing is
considered instantaneous in Petri Nets.

We have chosen the second alternative, for several reasons. First, mapping
subactivities into places poses the following problem: if a place represents a sub-
activity state, when the actor returns the subactivity will start again. Thus, to
represent the leaving point where a subactivity continues would be impossible.

24

J.L. Garrido and M. Gea

Net
[x=free]
m X
M read . e
y busy Operator 2'free
A
e e
m X X E
X,
ResolveEmergency AssistenceCall C EmergencyCall
[x=free]
m E X X e
free e
M Finished = AssistantOperator) A
[x=busy]
(a)
ResolveEmergency
color A = with free|busy
color E = with e
color M = with m
color D = with approved|rejected
var x: A
var t: D
u u()

[t=approved and

m T

vm
DecideRescue
OperatorAlone]

t m

IdentifyCaller b

t

[t=rejected]]

Om
e

[t:apprOVed and
OperatorNotAlone]

AssistenceCall

(b)

Fig. 3. CPN for the Emergency Coordination Centre

A Coloured Petri Net Formalisation for a UML-Based Notation 25

Secondly, the common Petri Net hierarchical modelling technique is by means
of substitution transitions, and therefore if a transition represents a subactiv-
ity, there always remains the possibility of decomposing it into various actions
(other transitions) and resting points (places) that enable interruptions and re-
turns. This is also the ideal solution to the previous problem. Thirdly, modelling
subactivities by transitions allows us to model data flow in the places of the
subactivity flow more clearly (e.g. place of type D in Fig.[3(b)).

Actors and Resources. As shown in the CPN model in Fig[B|(a), a role is con-
sidered equivalent to a type of resource, which is represented in a Petri Net as a
place and a specific type associated (type A). Hence, there would be one token in
the place for each actor playing this role. Each one of these places is labelled with
the corresponding role name. For instance, there is a place labelled Operator
with a token type A and, initially, two free value tokens (inscription 2 ‘free). For
the sake of simplicity, the net does not include the role ResourceResponsible,
and hence does not include the transition to take the initial decision correspond-
ing to the diamond in Fig 1(a). The arcs from role places to the subactivity
transitions and vice versa, corresponding to the roles performing activities in
Fig.2(b), have also been omitted.

Guards. In CPN, transitions can have guards associated, which implies that
the UML guards have a direct translation to CPN models, i.e. while the guard
condition is not satisfied the transition cannot occur. Guards expressed in nat-
ural language must be interpreted. This is done in part (Fig. Bi(b)) for the two
consecutive decision points in Fig. 21 These are merged in the CPN, producing
as many transitions as the total number of outgoing paths. The first condition
(approved or rejected) in the guard is translated on the basis of a specific piece
of information outgoing from the activity DecideRescue (type D token). With
respect to the second condition (OperatorAlone or OperatorNotAlone), this is
not interpreted in Fig. B(b) in order to simplify type A as much as possible and
to avoid additional arcs.

Events. Fig. includes two types of event: one internal event
(place AssistenceCall) and two external ones (EmergencyCall and
BrigadeTookResponsibility places). Irrespective of the type of event, these
are explicit signals translated into extra places receiving tokens from internal
actions (AskAssistence) or the environment (Generate). These places send to-
kens to subactivities/actions (transitions) that require them. Thus, the net firing
rule ensures that the transition receiving tokens cannot occur before the event
has happened.

6.2 Validation and Property Verification

CPNs allow us to validate and evaluate the usability of a system by performing
automatic and/or guided executions. These simulation techniques can also carry

26 J.L. Garrido and M. Gea

out performance analysis by calculating transaction throughputs, etc. Moreover,
by applying other analysis techniques it is possible to verify static and dynamic
properties in order to provide the complement to the simulation. Some of these
properties are that:

— There are no activities in the system that cannot be realised (dead transi-
tions). If initially dead transitions exist, then the system was bad designed.

— It is always possible to return to a subactivity if we wish (liveness). For
instance, this might allow us to rectify previous mistakes.

— It is always possible to return to a state before (home properties). For in-
stance, to compare the results of applying different strategies to solve the
same problem.

— The system may stop before completion (deadlock). Thus, a work might
never be finished, or it might be necessary to allocate more human resources
to perform it.

— Certain tokens are never destroyed (conservation). Hence, resources are
maintained in the system. This should be true for actors.

7 Conclusions

UML, with the nine notations embodied, is suggested as a general and standard
notation for the analysis, design and development of object-oriented software
systems. UML semantics is intended for the latter field; it is not a formal de-
scription. Neither does it define a standard process for its application, of which
we are taking advantage, but is intended to be useful with iterative development
processes.

In practice, the modelling power of UML is demonstrated by applying it to
diverse types of systems. New approaches to address the analysis and design of
cooperative systems must advance towards how to study and obtain interesting
properties for systems. We argue that concepts should be correctly represented,
at appropriate levels and that clear semantic links between them should be
provided for useful integration, thereby resulting in a more powerful, useful and
flexible system from all points of view.

Our main aim is to obtain the benefits of using an standard notation as UML:

— it allows us to model open, reactive systems [4], i.e., the main features of
cooperative systems,

— there exist several UML-based tools to design and generate software (Ratio-
nalRose, ArgoUML, ...), and

— new UML-based approaches are arising to model user interfaces [24J28].

On the other hand, it is necessary the application of formal methods to the
engineering of cooperative systems in order to build CSCW systems correctly. For
this purpose, CPNs have a graphical representation and well-defined semantics,
which allows compact and manageable representations and therefore one more
powerful analysis than that of UML.

A Coloured Petri Net Formalisation for a UML-Based Notation 27

References

10.

11.

12.

13.

14.

15.

16.

17.

. Artman, H., Waern, Y.: Distributed Cognition in an Emergency Co-ordination

Center. Cognition, Technology and Work, 1 (1999) 237-246

Dix, A.: “Formal Methods for Interactive Systems”. Academic Press (1991)
Ehrlich, K.: Designing Groupware Applications: A Work-Centered Design Ap-
proach. In: Beaudouin-Lafon, M. (ed.): Computer Supported Cooperative Work.
Wiley (1999) 1-28

. Eshuis, R., Wieringa, R.: A Comparison of Petri Net and Activity Diagram Vari-

ants. In: Weber, Ehrig, Reisig (eds.): Proc. 2nd. International Colloquium on Petri
Net Technologies for Modelling Communication Based Systems (September 2001)
93-104

Eshuis, R., Wieringa, R.: An Execution Algorithm for UML Activity Graphs. In
Proc. UML’2001. LNCS 2185, Springer (October 2001)

Ellis, C.A., Gibbs, S.J., & Rein, G.L.: Groupware: some issues and experiences.
Communications of the ACM, Vol. 34, No. 1 (January 1991) 38-58

Garrido, J.L., Gea, M., Gutiérrez, F.L., Padilla, N.: Designing Cooperative Systems
for Human Collaboration. In: Dieng, R., Giboin, A., Karsenty, L., De Michelis, G.
(eds.): Designing Cooperative Systems - The Use of Theories and Models. I0S
Press-Ohmsha (2000) 399412

Garrido, J.L., Gea, M.: Modelling Dynamic Group Behaviours. In: Johnson, C.
(ed.): Interactive Systems — Design, Specification and Verification. LNCS 2220.
Springer (2001) 128-143

Garrido, J.L., Gea, M., Padilla, N., Canas, J.J., Waern, Y.: AMENITIES: Mod-
elado de Entornos Cooperativos. In: Aedo, I., Diaz, P., Ferndndez, C. (eds.):
Actas del III Congreso Internacional Interaccién Persona-Ordenador 2002 (Inter-
accién’02), Madrid, Spain (Mayo 2002) 97-104

Gehrke, T., Goltz, U., Wehrheim, H.: The dynamic models of UML: Toward a
semantics and its application in the development process. Hildesheimer Informatik-
Bericht 11/98, Institut fur Informatik, Universitat Hildesheimer (1998)

Gogolla, M., Presicce, F.P.: State Diagrams in UML: A Formal Semantics using
Graph Transformations. In Proceeding ICSE’98 - Workshop on Precise Semantics
of Modeling Techniques (PSMT’98) 55-72

Grudin, J.: Groupware and Cooperative Work: Problems and Prospects. Reprinted
in Baecker, R.M. (ed.) Readings in Groupware and Computer Supported Cooper-
ative Work, San Mateo, CA, Morgan Kaufman Publishers (1993) 97-105
Harrison, M., Thimbleby, H. (eds.): Formal Methods in Human-Computer Inter-
action. Cambridge University Press (1990)

Jensen, K.: Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical
Use. Second Edition Springer(1996)

Jordan, B.: Ethnographic Workplace Studies and CSCW. In: Shapiro, D., Tauber,
M.J., Traunmueller, R. (eds.): The Design of Computer Supported Cooperative
Work and Groupware System. North-Holland, Amsterdam (1996) 17-42

King, P., Pooley, R.: Using UML to Derive Stochastic Petri Net Models. In N.
Davies and J. Bradley, editors. UKPEW ’99, Proceedings of the Fifteenth UK Per-
formance Engineering Workshop, Department of Computer Science, The University
of Bristol (July 1999) 45-56.

Malone, T.W., Crowston, K.: What is Coordination Theory and How Can It Help
Design Cooperative Work Systems. Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW’90). ACM Press, New York (1990) 357-370

28

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J.L. Garrido and M. Gea

McGrath, J.: Time, Interaction and Performance: a theory of groups. In Readings in
Groupware and Computer-Supported Cooperative Work. R. Baecker (ed). Morgan
Kauffman (1993)

Nardi, B. (ed): Context and Consciousness: Activity Theory and Human Computer
Interaction. MIT Press, Cambridge MA (1995)

OMG: Unified Modelling Language Specification. http://www.omg.org (September
2001)

Palanque, P., Bastide, R.: Synergistic modelling of task, users and systems using
formal specification techniques. Interacting with Computers 9 (1997) 129-153
Paterno, F.: Model-based Design and Evaluation of Interactive Applications.
Springer-Verlag (2000)

Pettit, R.G., Gomaa, H.: Validation of Dynamic Behavior in UML Us-
ing Colored Petri Nets. UML’2000 WORKSHOP. Dynamic Behaviour
in UML Models: Semantic Questions. On Line Proceedings (2000)
http://www.disi.unige.it/person/ReggioG/UMLWORKSHOP /PROGRAM.html
Pinheiro da Silva, P., Paton, N.W.: User Interface Modelling with UML. In Infor-
mation Modelling and Knowledge Bases XII. 10th European-Japanese Conference
on Infomation Modelling and Knowledge Representation. Saariselka, Finland (May
2000). Kangassalo, H., Joakkola, H., Kawaguchi, E. (Eds.) Amsterdam, IOS Press
(2001) 203217

Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language — Refer-
ence Manual. Addison-Wesley (1999)

Saldhana, J.A., Shatz, S.M.: UML to Object Petri Net Models: An approach for
Modeling and Analysis. In Procceding of Twelfth International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE2000)

Terveen, L.G.: An Overview of Human-Computer Collaboration. In Knolowledge-
Based Systems Journal, Special Issue on Human-Computer Collaboration (1995)
67-81

TUPIS’00: Towards a UML Profile for Interactive Systems Development. Workshop
of UML’2000. http://math.uma.pt/tupis00/

van der Veer, G.C., van Welie, M.: Task Based Groupware Design: Putting theory
into practice. In Proc. of Symposium on Designing Interactive Systems (DIS’2000)
New York (August 2000) 326-337

	Introduction
	Related Work
	UML Semantics versus CPN Semantics
	Framework
	Example of Cooperative Model
	Organisation Group
	Role Definition
	Task Definition
	Specification of Interactions between Actors

	Semantics for the Cooperative Model
	Translation Schemes from UML to CPN
	Validation and Property Verification

	Conclusions

