Function that returns the sum of two matrices
and also:
If $tau_1$, ..., $tau_n$ are numerical constants, then the term {tt (+ $tau_1 ... tau_n$)} denotes the sum $tau$ of the numbers
corresponding to those constants.
(=> (And (Matrix ?A) (Matrix ?B) (= (Row-Dimension ?A) (Row-Dimension ?B)) (= (Column-Dimension ?A) (Column-Dimension ?B))) (<=> (+ ?A ?B ?C) (And (Matrix ?C) (= (Row-Dimension ?A) (Row-Dimension ?C)) (= (Column-Dimension ?A) (Column-Dimension ?C)) (Forall (?I ?J) (=> (Defined (Value ?C ?I ?J)) (= (Value ?C ?I ?J) (+ (Value ?A ?I ?J) (Value ?B ?I ?J))))))))
(Undefined (Arity +)) (Undefined (Arity +)) (Undefined (Arity +)) (Undefined (Arity +))
(=> (And (Matrix ?A) (Matrix ?B) (= (Row-Dimension ?A) (Row-Dimension ?B)) (= (Column-Dimension ?A) (Column-Dimension ?B))) (<=> (+ ?A ?B ?C) (And (Matrix ?C) (= (Row-Dimension ?A) (Row-Dimension ?C)) (= (Column-Dimension ?A) (Column-Dimension ?C)) (Forall (?I ?J) (=> (Defined (Value ?C ?I ?J)) (= (Value ?C ?I ?J) (+ (Value ?A ?I ?J) (Value ?B ?I ?J)))))))) (=> (= (Cofactor ?M ?I ?J) ?Cof) (= ?Cof (* (Expt -1 (+ ?I ?J)) (Determinant (Matrix-Less-Row-And-Column ?M ?I ?J))))) (=> (= (Matrix-Less-Row ?A ?I) ?B) (Forall (?K ?L) (=> (Defined (Value ?B ?K ?L)) (=> (< ?K ?I) (= (Value ?B ?K ?L) (Value ?A ?K ?L))) (=> (>= ?K ?I) (= (Value ?B ?K ?L) (Value ?A (+ ?K 1) ?L)))))) (=> (= (Matrix-Less-Column ?A ?I) ?B) (Forall (?K ?L) (=> (Defined (Value ?B ?K ?L)) (=> (< ?L ?I) (= (Value ?B ?K ?L) (Value ?A ?K ?L))) (=> (>= ?L ?I) (= (Value ?B ?K ?L) (Value ?A ?K (+ ?L 1)))))))